Design and Simulation of Single Band Rectangular Patch Antenna

Amit Sharma^{*}, ^a, Rajni Sharma^a, Mayur Agarwal^b, Abneesh Kumar^a ^aDepartment of Electronics & Communication Engineering, IIMT, Meerut, Utter Pradesh, India ^bDepartment of Electronics & Communication Engineering, Mewar University, Chittorgarh, Rajasthan, India

Article Info

Article history: Received 1 January 2014 Received in revised form 20 February 2014 Accepted 28 February 2014 Available online 15 March 2014

Keywords

Rectangular Patch Antenna, Return loss, Directivity, Radiation pattern

Abstract

In the communication world microstrip patch antennas are of great use. Here a single band antenna at resonant frequency 1GHz is being designed. A slot is made, and then simulations are being carried out by using IE3D software [12]. Return loss, Directivity, Radiation pattern are the various properties observed after carrying out simulations. Here Neltec NX 9240 epoxy substrate material with dielectric constant 2.4 [7] is used.

1. Introduction

Microstrip patch antennas consist of a radiating patch at top, dielectric substrate and ground at the bottom [1]. Substrate selection should be done very carefully because properties of an antenna vary with substrate materials. Figure given below shows general two dimensional rectangular patch antenna

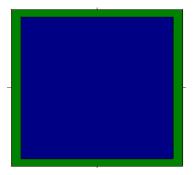


Fig: 1. Microstrip rectangular patch antenna

2. Antenna Design

Various parameters taken for antenna design are shown in the table I. various formulas for calculation

Corresponding Author,

E-mail address: amits_sharma108@yahoo.co.in All rights reserved: http://www.ijari.org

IJARI

of antenna parameters are taken from transmission line model [7].

Table: T Design parameters		
S. No.	Parameter Name	Value
1	Patch length(L)	96.04 mm
2	Patch width(W)	114.60 mm
3	Ground length(Lg)	108.04 mm
4	Ground width(Wg)	126.60 mm
5	Frequency	1 GHz
6	Height of patch	2 mm
	above ground(h)	

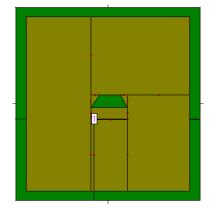


Fig: 2. Designed slotted rectangular patch antenna

The designed slotted rectangular patch antenna is shown in figure 2. Here simulations were carried out on IE3D zeland software [12] and various results such as return loss and directivity were obtained. The best feed point was (-8,-10) was selected after carrying out many simulations. Here in the figure 2, the given feed point is also being presented.

3. Results & Discussions

First property that we are discussing is return loss; Return loss is the reflection of signal in transmission line. When simulations were carried out then return loss of -10.23 dB was obtained at 0.815 GHz. Since the obtained return loss is less than -9.5 dB [11], hence we can say that we have obtained a well satisfying return loss. Also it is very clear from return loss graph that the designed antenna consists of a single band. Graph given below shows the obtained return loss.

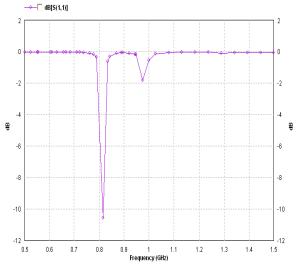
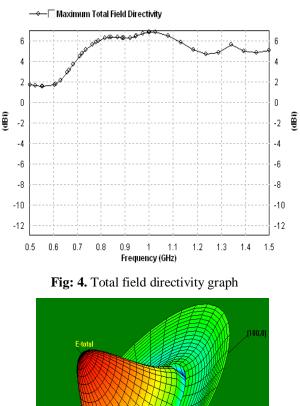



Fig: 3. Return loss graph

Next to discuss is directivity, It is the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions. Here in this research, a directivity of 6.21 dBi was obtained at 0.815 GHz frequency. For a good performance of an antenna the directivity should be more than 6 dBi. The obtained directivity is more than 6 dBi , Hence we can say that we have obtained a very good directivity. Graph given below shows the directivity

Third to discuss is radiation pattern. Radiation pattern is a graphical representation of the radiation properties of the antenna as a function of coordinates of space [11]. Figure 5 shows a 3D radiation pattern.

Total Field Directivity vs. Frequency

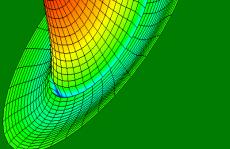


Fig: 5. Radiation pattern

4. Conclusion

Obtained return loss of -10.23 dB at 0.815 GHz is well satisfying for this single band slotted rectangular patch antenna. Also a very good directivity of 6.21dBi was obtained at 0.815 GHz. Since the designed slotted rectangular patch antenna produce results at 0.815 GHz, which lies in 0.8 GHz – 2.6 GHz band [9], hence it will be useful for various commercial wireless applications.

References

- C. A. Balanis, "Antenna Theory: Analysis and Design" Third edition John Wiley & Sons, Inc., 2005
- [2] John D Kraus, Ronald J Marhefka, Ahmad S Khan, "Antennas For Applications", Third edition, TMH Publications.
- [3] U. Chakraborty, S. Chatterjee, S. K. Chowdhury, P. P. Sarkar, "A Compact Microstrip Patch Antenna for Wireless Communication", Progress in Electromagnetic Research C, 18, 211-220, 2011
- [4] Alka Verma, "Analysis and Design of E Shaped Patch Antenna in X Band", International Journal of Advanced Engineering Technology, 3(1), 223-224, 2012
- [5] Barun Mazumdar, "A compact L slit Microstrip antenna for GSM, Bluetooth, WiMAX & WLAN Applications", International Journal of Engineering Research and Applications, 2, 687-691, September-October 2012
- [6] C. Vishnu Vardhana Reddy, Rahul Rana, "Thesis title "Design of linearly polarized rectangular microstrip patch antenna using IE3D/PSO", NIT Rourkela, 2010

- [7] Amit Sharma, Atal Rai, Reeta Verma. "Design and simulation of dual band rectangular patch antenna for Bluetooth and Wimax applications", IJERA, 3(5), pp 329-332, Sep-Oct 2013
- [8] Arun Singh Kirar, Veerendra Singh Jadaun, Pavan Kumar Sharma, "Design a Circular Microstrip Patch Antenna for Dual Band", IJECCT, 3(2), March 2013
- [9] Mahesh C. Bhad, Veeresh G. Kasabegoudar, Madhuri P. Rodge, "Electrically Small Rectangular Patch Antenna with Slot for MIMO Applications", Wireless and Mobile Technologies, 1(1), 25-28, 2013
- [10] Naresh Kumar Joshi, Anoop Singh Poonia, Piyush Choudhary, "Broadband Microstrip Sshaped Patch Antenna for Wireless Communication", International Journal of Computer Applications (0975 – 8887), 57(17), November 2012
- [11] Amit Sharma, Atal Rai, Neeraj Kaushik, "Study of Microstrip Rectangular Patch Antenna and its various parameters", IJARI, 2, 2-7, 2013